The Applied Data Science Lab is open for applications!
Learn More
WorldQuant University home
Hand pointing at digital line chartHand pointing at digital line chart

MSc in Financial Engineering

Start Application

The largest financial engineering program in the world is accredited, online for all, and entirely free of cost with no hidden fees.

Our MScFE is where programming and data science meet the future of finance.

Two women pointing at a transparent span chartTwo women pointing at a transparent span chart

Master of Science in Financial Engineering (MScFE)

This field is on the rise as financial innovation across the globe drives demand for analytics and data science training.

From evaluating statistics to econometric modeling, our educators teach advanced skills that can be used in the majority of industries. Graduates are prepared for sought-after positions in securities, banking, and financial management, and can also apply their skills at general manufacturing and service firms as quantitative analysts. Building on this foundation, the comprehensive Program also provides students with skills needed to succeed in presenting ideas and concepts in a professional business setting.

Learn more about the field in our blog post.

Next Deadline
March 26, 2024
Program Start Date
April 2, 2024
Entirely free
Two years
Applicant Requirements
Bachelor’s Degree
Proof of English proficiency
Passing score on Quantitative Proficiency Test (75% or higher)
20-25 hours a week
Master of Science in Financial Engineering Degree

Sharable Credly Certification

“My lifelong dream of being in the FinTech or Accounting industry is moving forward thanks to generous educational resources like yours. Since graduating from WorldQuant University tuition-free, my dream has taken the first step to becoming a reality.”

Chinelo Abadom, Nigeria
MScFE Program Graduate

What You Will Learn

Credly is the largest and most-connected digital network of credentials.

Designed by industry experts, WorldQuant University’s accredited Program integrates mathematical, statistical, and computer science tools with finance theory and professional business skills in a completely online and collaborative setting. Graduates are positioned to excel in today’s highly collaborative, fast-paced, professional environments.

The two-year Program consists of nine graduate-level courses and a Capstone Course during which students complete a culminating project. The courses are sequentially taught and build on one another. Taking one course at a time allows you to earn your degree without disrupting your life.

All courses are delivered in an online group setting and focus on applied projects.

Along with their diploma, students who successfully complete the MSc in Financial Engineering Program receive a shareable, verified version of their degree from Credly, the largest and most-connected digital credential network.

Program Outcomes

Upon completion of the Program, you will be able to:

Build proficiency with Python modules, data structures, and machine learning algorithms as applied to financial engineering.

Build hands-on skills summarizing and modeling both structured and unstructured financial data, and using the data for modeling in econometrics, machine learning, and deep learning.

Apply probability, linear algebra, and stochastic calculus techniques to solve pricing, hedging, prediction, and optimization problems.

Develop a quantitative and computational toolkit of methodologies to address financial challenges of credit risk, volatility, liquidity, leverage, regulation, and model breakdown with ethical principles in mind.

Analyze and solve financial problems by engaging in practitioner-oriented group work assignments and project-oriented problems applying collaborative and critical thinking skills.

Create clear and concise technical and non-technical reports that explain and interpret model results and recommend courses of action using various physical and digital media.

Labeled digital line chartLabeled digital line chart

Course Descriptions

The MSc in Financial Engineering Program consists of nine graduate-level courses and a culminating Capstone course. Students take one course at a time in a prescribed sequence. There is a two-week break between courses (one week for the grading process and one week for subsequent course registration).

Course 1

MScFE 560: Financial Markets

Length: 7 Weeks

In this pilot course for the MScFE Program, students are introduced to the world of professional finance: markets, products, participants, and regulation. The activities within financial markets will be discussed, including trading, financing, brokering, pricing, hedging, optimizing, and managing risk. Throughout the course, students identify a list of significant factors that affect the financial industry. Students will be able to interact with web apps that illustrate these concepts. Understanding the asset classes, activities, and influential aspects of the financial landscape will provide a solid foundation on which students will build mathematical and computational tools to develop models for financial engineering. No background in finance is required.

Course 2

MScFE 600: Financial Data

Length: 7 Weeks

This course introduces students to financial data: the source of energy for financial models. Students will learn how to apply Python to properly select, import, filter, structure, visualize, summarize, and analyze financial data for interest rates, equities, cryptocurrencies, ETFs, securitized products, and other asset classes. Students will also learn how to prepare data to be used in models for financial markets, from which decisions can be made, and how to accomplish fundamental analysis with accounting data, technical analysis with trading data, statistical analysis with transformed data, and sentiment analysis with textual data. Software engineering, visualization techniques, probability and statistics, linear algebra, and presentation skills will be developed throughout the course. The ultimate goal of this course is to build foundational skills that enable students to understand the type of data needed depending on their goals, how to source it, structure it, shape it, build with it, and discover what it tells. At their best, financial engineers turn data into empirically based, well-calibrated financial models whose output provides investors and risk managers with sound decisions in the uncertain world of finance.

Course 3

MScFE 610: Financial Econometrics

Length: 7 Weeks

This course provides a comprehensive introduction to financial econometrics. Students will learn how to model probability distributions of returns, including graphical, Bayesian, and non-parametrical methods. They will also learn how to model univariate time series, focusing on their moving average, autocorrelations, and volatilities, including GARCH models. Students will build additional tools to see how two financial series can relate to each other, using correlation, vector autoregressions, and cointegration. Further, they will build the statistical foundation and Python coding skills to run econometric models to apply in financial decision making. Finally, they will see how the ideas of bias, variance, and overfitting apply to machine learning.

Course 4

MScFE 620: Derivative Pricing

Length: 7 Weeks

Derivative Pricing is a hands-on course focused on pricing options. Students will build a conceptual background that deepens their understanding of why classical calculus is not sufficient for detecting rates of change in stochastic processes. Course content focuses on the concept of no-arbitrage and perfect replication using the world of stochastic calculus, including the Black-Scholes Model. Students will be able to construct pricing models such as binomial trees and finite difference methods to price an array of vanilla and exotic options. They will also measure sensitivities of the price to variables, such as the underlying price, volatility, time, interest rates, and carry costs. Finally, some extensions to classical models, such as the Heston Model and jump models will be addressed. Much of the course will include Python illustrations to build practical skills.

Course 5

MScFE 622: Stochastic Modeling

Length: 7 Weeks

In this course, students increase their knowledge of modeling stochastic processes. Students will investigate advanced volatility models that upgrade Black Scholes parameters to variables, increasing their stochastic modeling skills to address heteroskedasticity and variable costs as well as jump diffusions. Students will dive into Markov processes, including hidden Markov process and Markov decision process to financial applications, and will build a mathematical foundation for deep learnings, a tool they will use for machine learnings. Overall, students will be able to evaluate the assumptions, benefits, and difficulties associated with stochastic models.

Course 6

MScFE 632: Machine Learning in Finance

Length: 7 Weeks

This course addresses the fundamentals of machine learning. It continues the topics from the Financial Econometrics course whereby students will be able to apply algorithms to learn from data. Students will cover the mathematical and computational foundations of both the supervised and unsupervised machine learning problems, and they will use Python modules and a Tensorflow framework to predict, explain, or compare outcomes across different financial series. Students will apply machine learning techniques to determine if financial models are overfit, and use methods of regularization, cross-validation, and resampling techniques to mitigate it. In addition, students will develop a theoretical and practical background in deep learning models to improve the power of their financial model predictions.

Course 7

MScFE 642: Deep Learning for Finance

Length: 7 Weeks

Directly building on their skills from Machine Learning, students will further explore neural networks in Deep Learning for Finance. Students will build mastery in Python with TensorFlow to build and train neural networks and apply them to real life financial examples. They will expand their toolkits to perform regularization. During this course, students will use various algorithms to tune hyperparameters, including classical, Bayesian, and stochastic methods. Different neural network architectures will be addressed, particularly CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTMs (Long Short-Term Memory), and GRUs (Gated Recurring Units). These neural networks will be built from scratch, then illustrated in financial examples such as predicting stock prices, discovering investment factors, and back-testing trading strategies. Students will apply state-of-the-art techniques such as transfer learning and data augmentation. These methods will be used to improve the learning capability and performance of the networks, resulting in better predictions. In addition, students will learn the theory behind these tools, as well as richly exploring how to combine architectures with optimization techniques applied to real world data for comprehensive intraday trading strategy development.

Course 8

MScFE 652: Portfolio Management

Length: 8 Weeks

This course provides students with methodologies and skills to perform portfolio optimization. From the previous coursework, students will have a solid foundation on which to engage in the portfolio management process. In the first two modules, students will review classical methods of portfolio theory, including Markowitz portfolio optimization. Subsequent modules address more modern versions of the portfolio optimization process, including Black-Litterman, probabilistic scenario optimization, prospect theory, Kelly criterion, and risk parity. In addition, advanced econometrics and machine learning methods will be applied to the classical techniques, including the use of neural networks, genetic algorithms, information theory, and reinforcement learning. The course requires students to engage with the mathematical foundations, code implementation, and practical applications of portfolio management across many asset classes.

Course 9

MScFE 660: Risk Management

Length: 8 Weeks

This course provides students with both classical and modern methods of modeling and managing risk. The course begins by reviewing metrics and models for market, credit, and systemic risk, and applying these ideas to multiple asset classes, including derivatives. Machine learning methods will be integrated with both classical methods like VaR and GARCH and with robust methods like Extreme Value Theory. Then a comprehensive review of Bayesian methods will be given that builds towards a Bayesian network of modeling systemic risk. By taking the course, students will be able to synthesize a complex network and scenario analysis for both portfolio risk and systemic risk.

Course 10

MScFE 690: Capstone Course

Length: 10 Weeks

The Capstone Course is designed to put the students’ knowledge of financial engineering to the test. Students practically apply their understanding of the Program content by accomplishing project milestones from developing a problem statement, identifying the required technology to find a solution to the problem, submitting multiple drafts for peer review and instructor feedback, and finalizing and presenting their fully developed project. The goal of the Capstone Course is to ensure that students have met the Program outcomes and are able to apply their knowledge and skills to real-world scenarios.

Three adults on a video callThree adults on a video call

We are proud of the caliber of our students’ Capstone projects. See for yourself:

Momentum, Market-Regime and Stocks & Options Trading Strategies

Keywords: Momentum, Trading Strategies, Trend-Following, Options, Regime-Shift, Black-Scholes, VIX Index, Hid- den Markov Model, Average True Range, Moving Averages, Straddle, Dynamic Hedging


This research project seeks to examine the relationship between momentum, stocks and options trading strategies. First, we examine a simple momentum trading strategy for stocks. These discussions are then extended and applied to options trading. Further, we explore how changes in economic conditions can cause trading performances to change from long-term averages and techniques that can be used to mitigate the impact of volatility and regime-shifts on trading performance. Read more.

How can I use my degree?

Two adult men in front of several computer monitorsTwo adult men in front of several computer monitors

Financial engineers pursue professional roles such as quantitative researchers, quantitative developers, quantitative traders, algorithmic traders, and portfolio managers for financial institutions.

Beyond the world of finance many work to solve the world’s biggest problems by applying data through life sciences. Several of our graduates focus on public policy, working for governments developing state and federal financial policies, or conducting research at think tanks. Others focus on industries such as agriculture, healthcare, and emerging technology.

There is a tremendous amount of fluidity between different financial-engineering careers, as well as transferable skills that allow professionals to easily move between these opportunities.

Learn More About Careers

Which offering is right for me?

Master of Science in Financial Engineering

Next Deadline
March 26, 2024
Program Start Date
April 2, 2024
Entirely free
Program Length
Two years
Applicant Requirements
Bachelor’s Degree

Proof of English proficiency

Passing score on Quantitative Proficiency Test (75% or higher)
20-25 hours a week
Master of Science in Financial Engineering Degree

Sharable Credly Certification

Applied Data Science Lab

Next Deadline
Rolling admissions
Program Start Date
As soon as you're accepted
Entirely Free
Program Length
16 weeks
Applicant Requirements
Beginner-level Python skills

Familiarity with basic statistics

Passing score on Admissions Quiz (66% or higher)
10-15 hours a week
Shareable Credly Certification

Who should apply?

Students in the MScFE Program are curious, career-driven, computer-savvy quantitative thinkers. They have fully completed a bachelor’s degree and are interested in a future in financial engineering.

WQU students come from a broad range of countries and have diverse backgrounds. They want to advance their career and seek life-changing education. They are persistent, resilient, and committed to meeting the demands of our rigorous Program and mastering advanced concepts. They understand the value of collaborative work and value sharing knowledge as much as acquiring it.

Students are expected to commit 25 hours per week between lecture videos, assignments, group projects, and individual study.

Online instruction is best supported by access to the following essentials:

  • Computer
  • Webcam
  • High-speed internet connection

Four diverse adult professionalsFour diverse adult professionals

A MScFE Program Graduate let us know that “... it was an opportunity to access world class education in Financial Engineering and that was never going to be possible given my background and circumstances.”

Detailed information about WorldQuant University, the Program, requirements for admission, academic policies, and other considerations are available in the WorldQuant University Catalog.

Download Catalog

When do we start?

There are four start dates every year.

2024 MScFE Start Dates

Start DateApplication Deadline
January 9January 2
April 2March 26
July 2June 25
October 1September 24

Get Started Today

Start My Application
MScFE Program
Applied Data Science Lab

WorldQuant University is a leader in global education for data sciences. We deliver entirely free, online programs that expand access to studies and credentials in data sciences.

Privacy PolicyTerms of UseStudent Achievement Disclosure Form
© 2017–2023 WorldQuant University